Thermally reduced kaolin-graphene oxide nanocomposites for gas sensing

نویسندگان

  • Renyun Zhang
  • Viviane Alecrim
  • Magnus Hummelgård
  • Britta Andres
  • Sven Forsberg
  • Mattias Andersson
  • Håkan Olin
چکیده

Highly sensitive graphene-based gas sensors can be made using large-area single layer graphene, but the cost of large-area pure graphene is high, making the simpler reduced graphene oxide (rGO) an attractive alternative. To use rGO for gas sensing, however, require a high active surface area and slightly different approach is needed. Here, we report on a simple method to produce kaolin-graphene oxide (GO) nanocomposites and an application of this nanocomposite as a gas sensor. The nanocomposite was made by binding the GO flakes to kaolin with the help of 3-Aminopropyltriethoxysilane (APTES). The GO flakes in the nanocomposite were contacting neighboring GO flakes as observed by electron microscopy. After thermal annealing, the nanocomposite become conductive as showed by sheet resistance measurements. Based on the conductance changes of the nanocomposite films, electrical gas sensing devices were made for detecting NH3 and HNO3. These devices had a higher sensitivity than thermally annealed multilayer GO films. This kaolin-GO nanocomposite might be useful in applications that require a low-cost material with large conductive surface area including the demonstrated gas sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Reduced Graphene Oxide (rGO)-Loaded SnO2 Nanocomposite and Applications in C2H2 Gas Detection

Acetylene (C2H2) gas sensors were developed by synthesizing a reduced graphene oxide (rGO)-loaded SnO2 hybrid nanocomposite via a facile two-step hydrothermal method. Morphological characterizations showed the formation of well-dispersed SnO2 nanoparticles loaded on the rGO sheets with excellent transparency and obvious fold boundary. Structural analysis revealed good agreement with the standar...

متن کامل

Room temperature NO2 sensing: what advantage does the rGO-NiO nanocomposite have over pristine NiO?

In recent years, there has been increasing interest in synthesis of reduced graphene oxide (rGO)-metal oxide semiconductor (MOS) nanocomposites for room temperature gas sensing applications. Generally, the sensitivity of a MOS can be obviously enhanced by the incorporation of rGO. However, a lack of knowledge regarding how rGO can enhance gas-sensing performances of MOSs impedes its sensing app...

متن کامل

Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations.

Graphene is worth evaluating for chemical sensing and biosensing due to its outstanding physical and chemical properties. We first report on the fabrication and characterization of gas sensors using a back-gated field-effect transistor platform with chemically reduced graphene oxide (R-GO) as the conducting channel. These sensors exhibited a 360% increase in response when exposed to 100 ppm NO(...

متن کامل

In-situ synthesis and characterization of reduced graphene oxide –Ag nanocomposites

Reduced graphene oxide(rGO)–silver(Ag) nanocomposites have been prepared by using solution based facile one-pot synthesis process. The reaction process involves high-temperature liquid-phase exfoliation of graphite oxide and silver acetate in presence of N-N’dimethylformamide (DMF) solvent, resulting in simultaneous formation of rGO as well as Ag nanoparticles. Different nanocomposites have bee...

متن کامل

Fabrication of Sno2/Reduced Graphene Oxide Nanocomposite Films for Sensing No2 Gas at Room-Temperature

One-pot polyol process was combined with metal organic decomposition (MOD) method to fabricate a room-temperature NO2 gas sensor based on tin dioxide and reduced graphene oxide (SO2/RGO) nanocomposite films. X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were used to analyze the structure and morphology of the fabricated films. The electrical and NO2 gas-sensing properties of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015